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Abstract

A new approach to structural failure detection and localization is introduced based on
acoustic reflections. It is shown that the cross-sectional areas of structural elements can be
computed directly in terms of the rcffection  coc~lcients  of an optimal finite impulse response
Wiener filter realized in lattice form. This leads to an elegant method to detect and localize
structural failures using recursive on-line estimation rncthods. ‘1’here are many advantages
of this approach relative to standard failure detection scbemca. Specifically, the acoustic
reflection approach: 1) dots not require training; 2) doex not require prior knowledge of a
structural model; 3) can detect and localize multiple failures; 4) can indicate the extent  of
damage at each location. A simulation examp]c is given which successfully demonstrates
each of these qualities.

For the present paper, tbc acoustic reflection rnetbod is established by working out the
theory completely for a bar with nonuniform cross-sectional area in axial vibration. Some
ideas for extending the theory to more elaborate and realistic structural configurations arc
briefly outlined.

1 Introduction

A new approach to structural failure detection and localization is introduced based on acoustic
reflections. The basic idea is to ‘(ping” the structure and construct a map of the reflected energy.
g’his acts as a signature which can be monitored to detect future changes in the structure. More
importantly, it is showII that the location of the failure and extent  oj damage can be estimated
by using the wave propagation and reflection properties of the structure which are inevitably
CII a.n.ged in the location of the failure.

It is a main result of the paper that key reflectivity properties for detection and localization
of changes in a structural element obeying second-order wave propagation dynamics (i .c., a
bar in axial vibration or a shaft in torsional vibration) are characterized systematically and
elegantly in terms of the reflection cocfhcients  of an optimal finite impulse  respo]me  (FIR)
Wiener filter implemented in lattice form. This is important since many practical on-line
methods are available for estimating the optimal Wiener FIR filter. For example, recursive
iril~)lcl~~e~~tatiolls  are known using the I,MS algorithm [1 7], or faster methods using adaptive
lattice forms [23] and/or recursive least squares adaptation [19] [22]. Such implementations also
do not restrict the input excitation, i.e., instead of an impulsive “pinging” of the structure, the
required information can be obtained in a. more gentle fashion try using low-level broad-band
input excitation correlated over long periods of time.
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g’he reflectivity method provides the capability to detect and localize a failure without the
tedious task of training a optimal or suboptimal  detect,or/classifier.  The importance of this
property can he appreciated by noting that it is usually impossible to train on actual faults
since they must be implemented physically to elicit the proper signatures, Alternatively, fault
signatures can bc obtained by computer simulation or by analytical methods. 11 owcver, this
latter approach requires an accurate model of the system parametrized in physically meaningful
coordinates. It is questionable whether such a model exists in most applications of interest,
or if the fidelity would be suilciently hig}l to permit accurate detection/localization. q’he
reflectivity method dispenses with the need to train using fault signatures, or the need for
an accurate physical model. The reflectivity approach can also detect and localize multiple
simultaneous faults, and can provide relative information about the extent of damage at each
location.

l’ulse reflectivity methods have been used successfully in detecting breaks in electrical trans-
mission lines [16], in detecting faults in optical fibers [15], in determining physical properties
of materials using ultrasound [14], and in determining cross-sectional areas of the vocal tract
using acoustic tube models []]. However, to the authors’ knowledge such approaches have not
yet been applied to FDI  in structures. The present paper is focused to help fill  this gap. In this
paper, the theory of acoustic reflections is worked out completely for a bar with nonuniform
cross-sectional area, Extension to fourth-order systems (such as a beam in bending vibration)
and to complex interconnected structures is an area for future research, but  some reasonable
approaches will bc briefly outlined.

The paper is organized as follows. In Section 2, the optimal 11’IR  Wiener filter is derived,
and its lattice realization in terms of reflection cocfhcients is discussed. In Section 3, the wave
propagation properties of a bar are derived in terms of reflection properties and cross sectional
areas, and a similar lattice type of recursion is derived. In Section 4, the lattice recursions
for both the optimal Wiener filter and structural element are equated. This leads to the main
result of the paper which shows that the cross-sectional areas of the stuctural  element can be
colnputed  directly in terms of reflection coefficients. Hence, changes in the structure can be
detected and localized completely in terms of the optimal Wiener filter, which in turn can be
estimated recursively on-line. A simulation example is given in Section 5 to demonstrate the
advantages and usage of the approach, further research directions are
and conclusions are postponed until Section 7. Additional supporting
can be found in the appendices.

outlined in Section 6,
material and analysis

2 Lattice Realization of an Optimal FIR Filter

Consider the following inverse filtering problem. l,et a discrete, FIR inverse  transfer function
of a system be defined as

Q(z) = ~== 1 + fia(k)z-~
k=l

(1)

It is clear that t}ie  inverse transfer function can he completely specified with the knowledge of
the parameters a(l ),c4(2),. . . .a(lkf). If only input/output data of the system is available, the
unknown parameters may be identified using a. least squares estimation procedure to obtain
all optima] transfer function for the given data. ‘1’his represents the optimal FIR Wiener filter
[1 7]. This optimal transfer function maybe implemented in a variety of ways. One widely used
realization ill adaptive filtering is the lattice filter realization. ‘1’he lattice filter  is implemented
in a series of M stages for an M*h order FIR filter. The first stage accepts the input to the
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filter and the fi4th stage produces the output of the filter. Pictorially, it is shown as F’igure 2.
Note that the first stage receives two inputs, both of which are the filter input. Two quantities,
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l’igure  2: Stages of a ljattic,e Filter

f(n) and 9(7L) are recursively updated after each stage. After stage M, j(71) becomes the filter
Output, p(?l).

~’he lattice filter is described by the following set of well known order-recursive equations
[2]

~o(7~)  = g o ( n ) =  U(?l) (2)
j~,(?i) =  f~-l(?t)+jl”,gn,-l(?~  -  J )  m  = 1,2,...,  A4 (3)
9m(~) = l~n,fn,-l (?t)+gn,-l(?i–  1) m  = 1,2,. ... A4 (4)

P(?~)  =  
fAf(n) (5)

.. . . . . . . . . . . - -----  .V,S . .._. .L,, .,, ,, .,-y  m bv
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. calcula.tc the reflection cocfhcicnts  give]l the a parameters. Some of the ways are explained in
[2].

l,ct Qjf (z) bc the inverse transfer function of the systcm corresponding to (1).  It can be
shown (Appcndiz A) that Qj, (z) may be recursively calculated using the matrix recursion,

Where
Q:-(z) = I Q;(z) ~ ..2-1

3 A Recursive Solution to the Bar Equation

A solution will now be examined for the axial wave equation in a bar. We assume  that the
bar is lossless  and admits perfect reflection at one end. It will be shown that a bar  can be
thought of as being composed of several stages just. as in a lattice filter. As a result, a recursive
solution for the inverse transfer function of the bar  can be. derived which is very much like the
one derived for the lattice filter. In addition, the reflection coefficients of the recursive solution
now take on a physical significance that is very useful for structural failure detection and
localization.

l,ct U(Z, t) be the axial displacement of a bar element, where z is the distance variable in
the axial direction and t is the time variable. I’or an axial bar element in which plane waves
before deformation remain

III this equation, 1; is the
density. This equation has

plane, U(Z, t) satisfies the wave equation given by

8%(Z> t) d%(z, t)I< A-- -3~T =- PA –--g12—— (7)

elastic modulus, A is the cross sectional area, and p is the mass
the traveling wave solution

u(z, t) = U+(t – :)++.;) (8)

where c is the wave speed given by c =
K

~. Equation (8) can be interpreted as the summation
of two waveforms traveling in opposite directions. in particular, the waveform traveling to the
right is denoted as u+ (t – $) and the one traveling to the left, is denoted by u - (t + ~).

q’bc entire! bar  is now represented as a series of axially connected bars callccl sections
of cqu al length, 61. Section M represents the far left hand section and section 1 is the far
right  Ilalld section. IIctwccn  each section is a boundary. 11’roIn  structural theory, both the
displacmncnt  and the axial force must bc continuous at each boundary. q’hc axial force is
related to the displacement wave by p(x, t) = l;A@&~. l,et Uj,+ ~ (i) and u;+, (t) be the
forward and backward displacement waves measured directly at boundarv m + I atid time  t. l!y
using the boundary conditions and the properties of a 10SS1CSS bar, it is shown in Appcndk 11
that Uj,+ ~ (t) and U&+ ~ (t) can be related to the displacement waves measured at boundary m,
uj, (t) and u;](t), as follows

&- J--u;,+] (t +- ) — 1 + 7)”, [K(t)  -  7/r)J7f:1(~)l (9)

1 -  
(t)]u:,+ ~ (i -- 61) =.. -—–––- [u:,(t) -- 7/r,, tlnJ

1 +- ?]”,
( l o )
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F’igure  3: Bar Element Composed of M Stages

where
A &+ I An,+] — & An, ~ Sri,+] - -  s“,q“, .  —.——–

33m+1 Am+ 1 + J&An, s.,+ ~ + Sm
(11)

In this equation, & is the time required for a wave to travel through one section of the bar,
given by 6i = ~; F++1 is the elastic modulus of section m + 1; An~+l is the cross sectional area
of section m + j; and Sm js defined  M S“, $ Jj~Am,.

l,ct z be defined as
~ ~ #d(2n)  ~ ~“tiv24

!l’hcn , by taking the z transform of (9) and (10) where U~+l (z) represents the z transform of
u~,+ ~ (t) and UJ+l (z) represents the z transform of Uj,+.l  (t)

(12)

As a result of perfect reflection at the right end of the bar, qO takes a value of 1. Therefore,
for section 1, (12) may bc written as

11’urthcrmore, by repeatedly applying (1 2), the following relation is obtained for any section
m+ 1,

(15)



l’;quation  (14) is now written as

Normalizing equation
can bc wrjtten as

l,ct l~~f(z)  be the

It is defined as the ratio of the displacement wave at the far left of the bar over the displa.cement
wave at the far right  of the bar. l] owevcr, to represent the boundary conditions at the far left of
the bar in the same way as the boundary conditions at each junction in the bar, an imaginary
section M + I can bc visualized that has a matc}ling impedance to section M. As a. result of
the matched irnpcdar]c.e,  there is no negative traveling wave in section M+- 1. Then, the input
may be applied in section M +- 1 and t}lc boundary condition at junction M can be stated in
terms of a reflection cocflicicnt. In this schcmc, an extra z? delay is also artificially created.
It is assumed, though, that the input is added at the far left of the bar, so the added delay
may  be removed.

11 y using the definition of HA (z), the inverse transfer function bet wcen any section ,rn and
t}lc front end can bc described as

(20)

Similarly, we may  dcflnc
A - ‘;+1(2)

H;(z) =
v: –  u;(z)

by using the backward moving displacement wave. Substituting (20) and (2 I ) into (18) yields,

[%::ll=(’’)”’+’  [%!:ll
The fin al form inverse transfer function is then,

where l)jr(z)  is solved using (1 5). Then, by rclnoving  the extra Z4 delay,

‘J’}lc z term represents a delay and the l{~f is a gain factor.
Note that l~n,(z) in equation (15), may be put in recursive form by taking,

(21)

(22)

(23)

(24)

(25)

where
11; (2) =. 1 D;(Z) c - ~- 1

‘l’his recursion form is the same as that derived for a FIR filter with a lattice realization (6).
6



* 4 Identifying Damage Extent and Location

A recursive solution for an inverse transfer function was shown in equation (6) through the
use of a lattiqc  filter. Ily way of a c.omplctcly  separate physical argument., a recursive solution
for the inverse transfer function for a bar element was shown in equation (25). By comparing
thmc equations, it is clear that the two solutions are equivalent. This provides a physical
justification for modeling the inverse transfer function of a bar as a FIR filter. Furthcrrnorc,
the reflection coeflicicnts generated take on a physical meaning as defined in equation (11).

As a result of the above equivalence, a procedure may now bc developed to estimate the
cross sectional areas of a bar. First,, by using input/output data from a bar, the optimal, FII{,
inverse transfer function is identified. ‘l’he bar is now represented as a series of A4 sections and
the reflection cocfiicient,  q~, for each section is calculated as in a lattice filter. It should be
noted that the tot al number of bar sections, M, is constrained by the sampling period of the
output data. collection. Recall the equivalence of the recursive solutions of the FIR filter and
the bar element was shown w}len

~ == #7’ ~ ~“tilz$y

where  T is the sampling period. Since the sampling period
—

and the total number of sections is constrained to M = ~
bar. g’hc reflection coe~cicnl,s  are now usekl  to recursively
of the bar. IIlom equation (11);

~ _] –?/.,
m – —-—s.,  j

1 +- 1/,,,

Since the E’s  are assumed equal and constant,

An, =
I–qm
—Am+]
1 + T]m

(26)

is defined when taking  data,

(27)

where 1, is the total length of the
calculate the cross sectional areas

(28)

(29)

Note that the actual cross sectional area at boundary XM, the far left side of the bar, is needed
to start the recursion. If, however, this area is not known, it may be taken as 1. In this
case, all areas  estimated will bc normalized and damage will appear as a change in estimated
normalized areas. As a result, failure can still be identified and localized, but the exact amount
cannot be determined. Since qO is taken to be 1, the area at boundary Zo, the far right side of
the bar, cannot bc estimated. l’hereforc,  this procedure estimates cross sectional areas at all
boundary points except for the endpoints.

It is clear from equation (29) that the reflection coefficient at the far left side of the bar,
?)hf, is never used in the estimation of the cross sectional areas. Also, it is noted that all
reflection cocfhcicnts,  qn,, are dependent only on structural c}laracteristics  on either  side of a
single boundary (11 ). As a result, the estimation procedure is iridepcridcnt  of the boundary
condition on the far left side of the bar. ~’his eliminates the need for knowledge of material
properties of adjoining structural sections. Note, however, that although it is nmwr used, qJf
is estimated. This immediately gives us information about the, structural properties of the
adjoining scctioll at t}lc far left of the bar.

ldcally,  the cross scctiona]  areas of the bar  are continuously calculated. When some damage
dots occur, cross sectional areas change and the extent and location of the damage is imn~edi-
atcly  known.  Note that if damage  occurs betwecll two boundary locations, both the estimated
cross sectional areas  at the boundary before and after the damage location will change. This
wil isolate the damage  location between two boundary points.

7



* 5 Simulation Example

The acoustic reflection method js now illustrated through the use of a simulation example.
Consider a uniform 3 meter bar made of structural steel with cross sectional area of .00129 mz
(2 in2). !lle setup is shown in l~igure 4. On the far left side of the bar is a stack of piezoelec.tric

piezoclectric
displacement actuator

section 6 section 1

[Ill I ~——T———— I i

optical position sensor

f’
U12__ul : “’” :“’” ~ “’”: “n’ L
~—s. ‘

input output

Irigure 4: Simulated Itxpcrimcnt,al  %tup for Acoustic Reflection Method

actuators that are capable of commanding displacement. On the far right of the bar  is a laser
displacement sensor. Structural steel has an elastic modulus, l;, of 2el 1 lV/rn2 and a density,
p, of 7870 kg/rn3.  We take the sampling rate of the sensor to be 5041.127 lIz.  This sampling
rate  determines the sectional length (27) as .5 meters. Since the total length of the bar is 3
Xneters,  we have a total of 6 sections.

Any input can be applied by the displacement actuator h this method. For illustration
purposes, assume a .001 meter impulse is app]icd. I’he impulse response of the uniform bar
(undamaged) is shown in Figure  5. Note that the horizontal axis is marked in normalized time,
Each time unit represents the time required for a wave to travel through two sections of the
bar. In this case, this time is .198 rns. As can bc seen, the first output appears at time unit 3.
This pure delay is the time required for the impulse to travel  through all 6 sections of the bar.

The optimal FIR filter is identified using a least squares procedure described in Appendix
11. l+om  this optimal FIR filter, reflection coefficients and cross sectional areas are estimated.
We assume that wc know the cross sectional area of the far left of the bar exactly as .00129 rn2.
If this area. were not known, it could bc takcli as 1 and normalized areas could bc calculated.
The estimated bar is also shown in Figure 5. The crosshatched bars represent the simulated
a.rcas of each section. The white bars  represent the estimated areas using only input/output
data. Note that no damage appears and all cross sectional areas are estimated to bc equal.
g’he bar is now simulated to be damaged at section 3 such that the cross sectional area in that
section has been rcduccd  by 50 Yo. ~’hc ncw impulse response and the estimated damage is
slIown in l’igure  6. Note that the estimated daniagc  of section 3 is exactly 1/2 the original
area of the section. To show that the method works for small values of damage as well as large
values, the bar is simulated such that section 3 is 95 YO of its original area. Again, using only
input/output data, the cross sectional areas are estimated. The results are shown in Figure 7.

}+’ina]ly, the method is shown on multiple failures. The bar is simulated such that section
2 is 60 % of its original area, section 3 is 70 % of its original area, and section 5 is 50 % of
its original area. The impulse response and the estimated damage is shown in Figure 8. The
method works well for several failures at once.
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F’igure  6: Detection, Localization, and Estimation of Change in Cross-sectional Areas- 50 %
Change h Section 3

We have simulated the acoustic reflection method on an ideal bar to demonstrate the
approach. IIowever,  jn actual expcrimcntatjon,  there arc several issues that must bc consjdcred.
F’irst, noise corrupts all measurements. As a rcmdt,  estimated areas will be inc,orrcct to some
dcgrcc  and noll-existent damage may appear. This is particularly troublesome when tryjng to
identify small amounts of damage. ‘J’hercfore, some sort of threshold will be needed. Secondly,
the 1“11{. model order may cause potential difficulty. ‘1’he model order is fixed in this method
by the sampling rate. However, if this model order is not high enough to accurately model
the bar, estimated areas may be hcorrect.  This problem may be overt.omc by increasing the
sampling rate. F’inally,  the accuracy of the systcm identification tec}lniqucs  must be considered.
System identification techniques usc data that is inevitably corrupted by measurement noise
and round-off error. As a result, it is important to use enough data such that these effects can
be millilnized when filter parameters arc jclentificd.

N S4mdawdclamw

c1 E*h17.kJD8rNgc
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G Further Work

As derived herein, the acoustic reflection method can he applied to fault detection in second
order systems such as a string in transverse vibration, a bar in axial vibration, or a shaft in
torsional vibration. An important future extension would be the application to fourth order
systems such as a. beam in I.mndillg vibration. It is known that suc}l systems have traveling wave
representations [18][1 I]. IIowever,  in fourth order systems the medium  is dispersive and the
wave changes shape  as it travels. !I’his  would generally require a more complicated analysis,
e.g., the use of pole-zero lattices (e.g., [20] [21]) or heavily overparametrized  all-pole lattice
representations [23]. Alternatively, the dispersive qualities of the structure could be rniltimized
by restricting the excitation to wave packets over restricted narrowbands  of frequency, or by
using colocated  actuator/sensor instrumentation with time-windowing to retain only the early
portion of the pulse response (i.e., the near-field return).

q’he extension to a complete structure with interconnected elements is also desired. MUC}I of
the groundwork for this extension has already been laid due to recent eflorts  directed at control-
ling structures based on traveling wave representations [10][11][1 2][13]. IIere,  each structural
chnent  is considered to be a waveguide,  and the energy rcflcctioll  properties at the ju]lctions
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(boundaries) are represented by scattering matrices. ‘J’he scattering matrix concept generalizes<
the notion of a reflection cocfhc.icnt used to characterize a. one-dimensional boundary. ILepre-
scnting  each structural member as a lattice filter, it is conceivable that an “3-IJ lattice model”
of the structure can be built by interconnecting lattice filters with the same geometry as the
true structure, using the appropriate scattering matrix interconnections at the boundaries. A
long term goal would be to estimate cross-sectional areas at each point of the 3-dinmnsional
lattice model  using actuators and sensors distributed about the structure.

The analysis in this paper utilized a displacement wave rcprcscntation  of the dynamics.
An important alternative would be to consider “force-velocity” representations. This  gives
a perfect ana30gy to “voltage-current” representations of transmission lines, and “pressure-
vo]uTnc  velocity” representations of acoustic wavcguidcs. l’owerful network analysis methods
could then be applied, and ‘timpedancc” concepts could be developed. It appears that such an
approach would lend more insight into the treatment of boundary conditions, and would bc
most useful for extending the theory to interconnected structures.

While extending the method as outlined above requires additional research efiort,  a simple
brute! force. method which would work for any structure or configuration would be to treat
the detection problcm  as a pattern recognition problem, and usc the estimated cross-sectional
areas (derived from the reflection coefficients) as “feature vectors”. TO the authors’ best
knowledge, such physically motivated features have not yet tmen used for detection/localization
in structures. It seems that the cross-sectional area estimates would make very good feature
vectors since they enjoy a one-to-one correspondence to fault locations in second-order systems
under ideal conditions, and hence would at least correlate strongly with the location of faults
for more  complex interconnected fourth order  systems.

7 Conclusions

A method for structural failure detection and locaJization has been introduced based  on acous-
tic reflections. tl’he theory has been worked out completely for a bar with nonuniform cross-
scctional  area. An important theoretical result  is that the cross-sectional areas of the bar can
bc calculated directly in terms of the reflection coefilcients of the optimal FIR Wiener filter
realized in lat ticc form. This reduces the problem of detecting and localizing failures to one
of estimating the optimal FIR Wiener filter for the inverse plant. l’ort unate]  y, many  conve-
nient  recursive algorithms exist for estimating the optimal FIR Weiner filter  and any of such
methods can bc used with the present approac}i.

A simulation study was conducted to validate the overall acoustic reflection approach. A
uniform bar was chosen as the structural clement for the study. The. cross-sectional areas of
the bar were perturbed to various extents in multiple locations to simulate structural failures
and damage of various extent. As .ezpcctcd from the theory, the acoustic reflection algorithm
correctly dctcctcd  artd located multiple jailurcs  in the bar, and estimated the cxteni  of damage at
each location. I’urthcrmorc,  as cxpcctcd jrom the theory, it accomplished this without training,
and without prior knowledge oj a structural model.

The results of this study arc very cnc.ouraging, and indicate various directions for future
eflorts.  ‘J’he most obvious are extension to fourth-order systcrns,  and extensions to intercon-
nected systems. While  such extensions arc not straightforward, some guidc]ines and possible
approaches were discussed in the paper.
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A P P E N D I X  A

Least Squares Estimation and the Lattice Realization

1,ct an inverse transfer function bc defined as

Q(z) =- 1 + ~a(k)z-’ (30)
k=l

It is clear that the inverse transfer function is an l’lR  filter with parameters a(l ),cY(2),. . ., Q(M).
‘l’here arc 114 unknown a’s needed to characterize the transfer function. ~’he unknown param-
eters  are identified using a least squares estimation procedure. l)e~lote  the error bctwccn the
measured p(7L) and that estimated from our model as e(n). ‘1’hcn

c(n) = p(n) – ~ (r(k)rf(n - k); (r(o) = 1 (31)
k=o

‘Jle sum of the squares of the errors from time, O, to the current time,  n, is written

E(n) = ‘&’(t) = ~{p(i) – ~ cr(k)rl(t – k)}z (32)
i=o :=0 k=O

where  t is a discrete variable. l~(n)  is now minimized with respect to the filter parameters.
‘I’his results in a set of M linear equations of the form

$j@’u.(k -1)= r,.(l) - r“”(l); 1=1,2,..., M (33)
k=l

where the rtiv is the autocorrelation  of u(t) given by

r“”(m) == ‘&t)u(t – m)
:=0

and rPu(m)  is the cross correlation of p(t) and u(t) given by

Tpu(m) == ‘f p(i)rf(t -- 7)1)

t=o

(34)

(35)

Note that u.(t) == O for t <0. Also ruU(m)  = rUU(–m). As a result, (33) may be written as

[ Tuu(o) Twu(]) T“”(2) . . . T“”(M – 1)

I Tuu(]) Tuu(()) TUU(I)  . . . ~uU(M --2)

[

.

~uti(ti  – ]) ~UU(fii  - 2) Tuu(if  – 3) . . . “rUU(O

l;quatioxl (36) can be rewritten as
It& = ?

cl(l)
cl(2)

(I(M)
1 rp. (]) – Tuu(l)

7’P”(2) – r.u(2)
= I .

[ T,.(M) -  ~..(~)
(36)

(37)

where  the definitions of the matrix R, and the vectors d and 7 are obvious from equation (36).
Note that R is in ‘1’oeplitz  form. q’he equation of the form (37) can bc so]vcd  in a variety of
ways to obtain the a parameters of the inverse transfer function. q’he most straightforward
way conceptually is to invert the X matrix to get

~=: ](-lF (38)
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Recall, that the lattice filter is described by the followjng  set of well known order-recursive
equations described earlier, but repeated here

f,(n) = g~(n) = u(n) (39)

f~(n) = k](?~)+ Pm,gm,-l(n –  1) m = 1,2,...,  A4 (40)

9m(n)  = /~n,.fn,-  l(n) -t g“)-l(?~  - 1) ??z ~ 1,2,.  . . .  M (41)

p ( n )  =  j*f(n) (42)

The lattice filter is equivalent to the FIR filter. As a result,

p(?l)  = f~f(?z) = ~cl(k)u(n  - -  k) CY(o) = 1 (43)
k=o

Indeed  after any stage  m of the. lattice, the ~,,,(n) may be represented as

jm(n)  = ~ Crn,(k)u(?’  -- k) a(o) == 1 (44)
kso

where aw, (k)’s  arc unique  for each O < m ~ M. ])cfine

A.,(z) =  1  +  ~ cxn,(k)z-”k _m>] (45)
k=]

Then the z transform of (44) is
1~,(.z) = A,,,(z)U(Z) (46)

or
z;,(z)

Am(z)  == ----—
lJ(z)

(47)

Note Am,(z)  represents the tra.)isfcr  function fronl the input to the output, jn, (n),aftcr  stage
m. ‘1’hc other output g(n) may also be expressed as a sum. By working through equations
(39) - (42), it seen that

nl
9rn(?~) = yj%(?n - k)u(n -- k) (48)

k=o

where  it is noted that the o ‘s nccdcd for g(n) in (48) are the same as those  needed for ~(n)
in (44), but  in rcwerse order. I)efine

N“,(z)  =- ~ crrr,(?n  – k),z-k (49)
k=o

Note
Bin,(z) = 2-”’A”,(2-1) (50)

Then the z transform of (48) is
G“,(z) = Bn,(z)()(z) (51)

and

(52)

Now take the z transform of equations (39)- (42)

Fe(z) == GQ(Z) = [)(2) (53)

.&(z) = li~,_l(z)+  p~z-]Gn,_l(z) m = 1,2,...,  J4 (54)

Gn,(z)  = pm,lJ~,_l(2)  4  z-lG’n,-  ~(z) 7/1 =. 1 , 2 , . .  . , M (55)

}’(z) = l~f(z) (56)
15



l]y dividing each equation by U(z),

AO(.Z) == Bo(.z) == 1 (57)

A.l (z) = An,_I(z) -i /Ln,Z -]llm-, (z) m== 1,2,..., M (58)

11”, (z) = pn, Aw,.l(z) +- z-lBr,,_l(z) m = 1,2,..,, A4 (59)

where AA~ (z) becomes the k’11{, transfer function.
rccursivc  matrix form as

KM]= L ‘~

‘Ilcsc equations

in order 1,0 directly compare the recursive matrix equation
now put into a slightly difierent  form. ])cfinc

Q;](z) =- - 2 - ’ 1 ) ” , ( 2 )

and

Q:,(z) = A,(z)

60) tc

an now be put into order

[60)

the bar  equations, (60) is

(61)

(62)

lly using these  definitions in (58) and (59) and writing the new equations in matrix form,

where from (57)
Q$(z) == I Q;(z) ~ _.z-l

.
A very elegant and cflicient way of obtaining the reflection cocfflcients, pm, directly from

(37) is to solve the l,evinson-l)urbin  algorithm. In this algorithm, the a’s are calculated
recursively and the reflection coefficients are calculated as an intermediate step in the recursion.
I’his met]lod  may be very useful in adaptively updating the reflection coefhcients  on-line.
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A P P E N D I X  B

Boundary Condit ions and the Bar Equation

l,et U(X, i) be the axial displacement of a. bar element, where x is the distance va.riaMe  in the
axial direction and t is the time variable. For an axial bar element in which plane  waves before
deformation remain plane,  U(Z, t) satisfies the wave equation given by

~#rf(z,t) 8%(X, q
—~~ = pA ---~tz (64)

II] this equation, 1~ is the elastic. modulus, A is the cross sectional area, and p is the mass
density. ]n more familiar wave equation form, (64) can be rewritten as

&u(z,q I Wl(x,i)-—-——. . _ ——___
8X2 ~2 &2 = 0

where c is the wave speed,  given by c =.
J-?. ‘This equation has the solution given earlier

‘i’he axial force in the bar  is related to the axial displacement by

Given the solution for the axial displacement, the axial force may be written as

(65)

(66)

(67)

(68)

l+om structural theory, both the displacement and the axial force must bc continuous at each
boundary. Consider the boundary at x., bctwccn  sections 7rL and rn + 1, T’he continuous
displacement condition is written as

U,,,+ l(zm, t) = U“, (zm, t) (69)

cw
(70)

Since the bar  is assumed lossless, it is noted that the left traveli~lg  wave has the same amplitude
at junction Zn, an d time t as the same  left traveling wave at junction Xn,+, at a time tit later.
‘1’he salne  is true for the right traveling wave at a time dt earlier. Since each bar section is of

‘qua]  lc’’gt]” 6i = -*” ‘~’erefore’

}1’ro)n these equations, it is seen that as long as the proper time is observed, Ufi,+l can always
be lncasurcd  at boundary Zw,+l. ‘1’hercfore,  the distance subscript z can be dropped and the
disp]accment  continuity condition can be writtxvl in short form as

u:,(i) -- u;,(t) = U:+l (t – &) - u;,+ ~ (t + dt) (71)
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v 4 Si’lnilar to the continuous displacement condition, the continuous axial force condition is written
m

Prn-tl(LJl?~)  =  Pm(%, ~) (72)

l’his  condition can be. rewritten using (68) rM

—

By again using the lossless property of the bar,

En,+l An,+ Iu;+l (i +- dt) + &,+lA~J+  lU:J+ 1 (i - 6t) =  l~n)A”~ti~t(~) i J;mAniu~(~) (74)

]n order to simplify the notation, let

S~, == P;~,An,

then  (74) may bc written as

Sn,+l~~+~(~  +- ~t) + Sm+l”xl+ 1 (t -- dt) = Smrf;i(i) + Snlu:,(t)

With the use of (75) and (71)

s + L- (1)(1 + $~)_Au+(i)(] –  G) z ~
%)+l(t +  ~~) = ~ w,

~m+l

is obtained. Similarly, with the use of (75) and (71)

Now define
F;n,+l A~+l  -- E~A~ = S~+l – Stn

~m = —.— . — — — — .
En,4.1A~+l + E~Am, S.,+1 + Sm

g’hcn (76) may bc written as

and (77) may be written as

u:,+ , (i - (n)= +&i) - T/n*rL;,(i)]

(75)

(76)

(77)

(78)

(79)

(80)


